ANNA UNIVERSITY, CHENNAI AFFILIATED INSTITUTIONS R - 2009 M.E.COMPUTER SCIENCE AND ENGINEERING I SEMESTER (FULL TIME) CURRICULUM AND SYLLABI

SEMESTER I

SL.	COURSE					
NO	CODE	COURSE TITLE	L	Т	Ρ	С
THEC	DRY					
1	MA9219	Operations Research	3	1	0	4
2	CS9211	Computer Architecture	3	0	0	3
3	CS9212	Data Structures and Algorithms	3	0	0	3
4	SE9213	Object Oriented Software Engineering	3	0	0	3
5	CS9213	Computer Networks and Management	3	0	0	3
PRACTICAL						
6	CS 9215	Data Structures Lab	0	0	3	2
7	CS9216	Networking Lab	0	0	3	2
		TOTAL	15	1	6	20

LIST OF ELECTIVES FOR M.E.COMPUTER SCIENCE AND ENGINEERING*

SL.	COURSE					
NO	CODE	COURSE TITLE	L	Т	Ρ	С
1	CS9251	Mobile Computing	3	0	0	3
2	CS9252	Grid Computing	3	0	0	3
3	CS9253	Theory of Computation	3	0	0	3
4	CS9254	Soft Computing	3	0	0	3
5	CP9264	Distributed Computing	3	0	0	3
6	CS9256	Multimedia Systems	3	0	0	3
7	CS9257	XML and Web Services	3	0	0	3
8	CS9258	Bio Informatics	3	0	0	3
9	CS9259	Network Security	3	0	0	3
10	CS9260	Embedded Systems	3	0	0	3
11	CS9261	Digital Imaging	3	0	0	3
12	CS9262	Software Quality Assurance	3	0	0	3
13	CS9263	Ad-hoc Networks	3	0	0	3
14	CS9264	Data Warehousing and Data Mining	3	0	0	3
15	CS9265	Performance Evaluation of Computer Systems	3	0	0	3
		and Networks				
16	CS9266	Agent Based Intelligent Systems	3	0	0	3
17	CS9267	Visualization Techniques	3	0	0	3
18	CS9268	Advanced Databases	3	0	0	3
19	CS9269	Software Project Management	3	0	0	3
20	CS9270	Component Based Technology	3	0	0	3

based speculation – Limitations of ILP – Case studies.
UNIT III INSTRUCTION LEVEL PARALLELISM WITH SOFTWARE APPROACHES 9 Compiler techniques for exposing II P – Static branch prediction – VI IW – Advanced compiler
support – Hardware support for exposing more parallelism – Hardware versus software speculation mechanisms – Case studies.
· •

MA9219

UNIT I **QUEUEING MODELS**

Poisson Process – Markovian Queues – Single and Multi-server Models – Little's formula – Machine Interference Model – Steady State analysis – Self Service Queue.

OPERATIONS RESEARCH

UNIT II ADVANCED QUEUEING MODELS

Non- Markovian Queues – Pollaczek Khintchine Formula – Queues in Series – Open Queueing Networks - Closed Queueing networks.

UNIT III SIMULATION

Discrete Even Simulation – Monte – Carlo Simulation – Stochastic Simulation – Applications to Queueing systems.

UNIT IV LINEAR PROGRAMMING

Formulation – Graphical solution – Simplex method – Two phase method - Transportation and Assignment Problems.

UNIT V NON-LINEAR PROGRAMMING

Lagrange multipliers – Equality constraints – Inequality constraints – Kuhn - Tucker conditions – Quadratic Programming.

L: 45 T: 15 TOTAL: 60 PERIODS

- 1. Winston.W.L. "Operations Research", Fourth Edition, Thomson Brooks/Cole, 2003.
- 2. Taha, H.A. "Operations Research: An Introduction", Ninth Edition, Pearson Education Edition, Asia, New Delhi, 2002.

REFERENCES:

TEXT BOOKS:

- 1. Robertazzi. T.G. "Computer Networks and Systems Queuing Theory and Performance Evaluation". Third Edition. Springer. 2002 Reprint.
- 2. Ross. S.M., "Probability Models for Computer Science", Academic Press, 2002.

CS9211	COMPUTER ARCHITECTURE	LTPC
		3003

UNIT I FUNDAMENTALS OF COMPUTER DESIGN AND PIPELINING 9

Fundamentals of Computer Design - Measuring and reporting performance - Quantitative principles of computer design. Instruction set principles - Classifying ISA - Design issues. Pipelining – Basic concepts – Hazards – Implementation – Multicycle operations.

UNIT II INSTRUCTION LEVEL PARALLELISM WITH DYNAMIC APPROACHES 9 Concepts – Dynamic Scheduling – Dynamic hardware prediction – Multiple issue – Hardware

LTPC 3104

9

9

9

9

UNIT IV MULTIPROCESSORS AND MULTICORE ARCHITECTURES

Symmetric and distributed shared memory architectures – Performance issues – Synchronisation issues – Models of memory consistency – Software and hardware multithreading – SMT and CMP architectures – Design issues – Case studies.

UNIT V MEMORY AND I/O

Cache performance – Reducing cache miss penalty and miss rate – Reducing hit time – Main memory and performance – Memory technology. Types of storage devices – Buses – RAID – Reliability, availability and dependability – I/O performance measures – Designing an I/O system.

TOTAL : 45 PERIODS

REFERENCES:

- 1. John L. Hennessey and David A. Patterson, "Computer Architecture A quantitative approach", Morgan Kaufmann / Elsevier, 4th. edition, 2007.
- 2. David E. Culler, Jaswinder Pal Singh, "Parallel Computing Architecture : A hardware/ software approach", Morgan Kaufmann / Elsevier, 1997.
- 3. William Stallings, "Computer Organization and Architecture Designing for Performance", Pearson Education, Seventh Edition, 2006.
- 4. Behrooz Parhami, "Computer Architecture", Oxford University Press, 2006.

CS9212 DATA STRUCTURES AND ALGORITHMS L T P C 3 0 0 3

UNIT I COMPLEXITY ANALYSIS & ELEMENTARY DATA STRUCTURES

Asymptotic notations – Properties of big oh notation – asymptotic notation with several parameters – conditional asymptotic notation – amortized analysis – NP-completeness – NP-hard – recurrence equations – solving recurrence equations – arrays – linked lists – trees.

UNIT II HEAP STRUCTURES

Min-max heaps – Deaps – Leftist heaps –Binomial heaps – Fibonacci heaps – Skew heaps - Lazy-binomial heaps.

UNIT III SEARCH STRUCTURES

Binary search trees – AVL trees – 2-3 trees – 2-3-4 trees – Red-black trees – B-trees – splay trees – Tries.

UNIT IV GREEDY & DIVIDE AND CONQUER

Quicksort – Strassen's matrix multiplication – Convex hull - Tree-vertex splitting – Job sequencing with deadlines – Optimal storage on tapes

UNIT V DYNAMIC PROGRAMMING AND BACKTRACKING

Multistage graphs – 0/1 knapsack using dynamic programming – Flow shop scheduling – 8-queens problem – graph coloring – knapsack using backtracking

3

TOTAL: 45 PERIODS

9

9

9

9

9

REFERENCES:

- 1. E. Horowitz, S.Sahni and Dinesh Mehta, Fundamentals of Data structures in C++, Galgotia, 1999.
- 2. E. Horowitz, S.Sahni and S. Rajasekaran, Computer Algorithms / C++, Galgotia, 1999.
- 3. Adam Drozdex, Data Structures and algorithms in C++, Second Edition, Thomson learning vikas publishing house, 2001.
- 4. G. Brassard and P. Bratley, Algorithmics: Theory and Practice, Printice -Hall, 1988.
- 5. Thomas H.Corman, Charles E.Leiserson, Ronald L. Rivest, "Introduction to Algorithms", Second Edition, PHI 2003.

SE9213 OBJECT ORIENTED SOFTWARE ENGINEERING L T P C 3 0 0 3

UNIT I INTRODUCTION

System Concepts – Software Engineering Concepts – Development Activities – Managing Software Development – Unified Modeling Language – Project Organization – Communication

UNIT II ANALYSIS

Requirements Elicitation – Concepts – Activities – Management – Analysis Object Model – Analysis Dynamic Models

UNIT III SYSTEM DESIGN

Decomposing the system – Overview of System Design – System Design Concepts – System Design Activities – Addressing Design Goals – Managing System Design

UNIT IV OBJECT DESIGN AND IMPLEMENTATION ISSUES

Reusing Pattern Solutions – Specifying Interfaces – Mapping Models to Code – Testing

UNIT V MANAGING CHANGE

Rationale Management – Configuration Management – Project Management – Software Life Cycle

TOTAL : 45 PERIODS

REFERENCES:

- 1. Bernd Bruegge, Alan H Dutoit, Object-Oriented Software Engineering, 2nd ed, Pearson Education, 2004.
- 2. Craig Larman, Applying UML and Patterns, 3rd ed, Pearson Education, 2005.
- 3. Stephen Schach, Software Engineering 7th ed, McGraw-Hill, 2007.

9 ging

9

9

9

CS9213 COMPUTER NETWORKS AND MANAGEMENT

UNIT I HIGH SPEED NETWORKS

Frame Relay Networks – Asynchronous transfer mode – ATM Protocol Architecture, ATM logical Connection, ATM Cell – ATM Service Categories – AAL. High Speed LAN's: Fast Ethernet, Gigabit Ethernet, Fibre Channel – Wireless LAN's.

UNIT II CONGESTION AND TRAFFIC MANAGEMENT

Queuing Analysis- Queuing Models – Single Server Queues – Effects of Congestion – Congestion Control – Traffic Management – Congestion Control in Packet Switching Networks – Frame Relay Congestion Control.

UNIT III TCP AND ATM CONGESTION CONTROL

TCP Flow control – TCP Congestion Control – Retransmission – Timer Management – Exponential RTO backoff – KARN's Algorithm – Window management – Performance of TCP over ATM. Traffic and Congestion control in ATM – Requirements – Attributes – Traffic Management Frame work, Traffic Control – ABR traffic Management – ABR rate control, RM cell formats, ABR Capacity allocations – GFR traffic management.

UNIT IV INTEGRATED AND DIFFERENTIATED SERVICES

Integrated Services Architecture – Approach, Components, Services- Queuing Discipline, FQ, PS, BRFQ, GPS, WFQ – Random Early Detection, Differentiated Services.

UNIT V PROTOCOLS FOR QoS SUPPORT

RSVP – Goals & Characteristics, Data Flow, RSVP operations, Protocol Mechanisms – Multiprotocol Label Switching – Operations, Label Stacking, Protocol details – RTP – Protocol Architecture, Data Transfer Protocol, RTCP.

TOTAL : 45 PERIODS

TEXT BOOKS:

1. William Stallings, "HIGH SPEED NETWORKS AND INTERNET", Pearson Education, Second Edition, 2002.

REFERENCES:

- 2. Warland & Pravin Varaiya, "HIGH PERFORMANCE COMMUNICATION NETWORKS", Jean Harcourt Asia Pvt. Ltd., II Edition, 2001.
- 3. Irvan Pepelnjk, Jim Guichard and Jeff Apcar, "MPLS and VPN architecture", Cisco Press, Volume 1 and 2, 2003.

9

9

10

8

UNIT II TELECOMMUNICATION SYSTEMS

GSM – System Architecture – Protocols – Connection Establishment – Frequency Allocation – Routing – Handover – Security – GPRS.

UNIT III WIRELESS NETWORKS

Wireless LAN – IEEE 802.11 Standards – Architecture – Services – HIPERLAN – Adhoc Network – Blue Tooth.

6

CS9215

Min Heap
Deaps
Leftist Heap
AVL Tree
B-Tree

9

UNIT IV **NETWORK LAYER**

Mobile IP - Dynamic Host Configuration Protocol - Routing - DSDV - DSR - AODV - ZRP -ODMR.

UNIT V TRANSPORT AND APPLICATION LAYERS

TCP over Wireless Networks – Indirect TCP – Snooping TCP – Mobile TCP – Fast Retransmit / Fast Recovery - Transmission/Timeout Freezing - Selective Retransmission - Transaction Oriented TCP - WAP - WAP Architecture - WDP - WTLS - WTP - WSP - WML - WML Script – WAE – WTA.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Jochen Schiller, "Mobile Communications", Second Edition, Pearson Education, 2003.
- 2. William Stallings, "Wireless Communications and Networks", Pearson Education, 2002.

REFERENCES:

- 1. Kaveh Pahlavan, Prasanth Krishnamoorthy, "Principles of Wireless Networks", First Edition, Pearson Education, 2003.
- 2. Uwe Hansmann, Lothar Merk, Martin S. Nicklons and Thomas Stober, "Principles of Mobile Computing", Springer, 2003.
- 3. C.K.Toh, "AdHoc Mobile Wireless Networks", First Edition, Pearson Education, 2002.
- 4. Burkhardt, "Pervasive Computing", First Edition, Pearson Education, 2003.

CS9252

GRID COMPUTING

UNIT I INTRODUCTION TO GRID COMPUTING

Introduction - The Grid - Past, Present and Future - Applications of grid computing organizations and their roles.

UNIT II **GRID COMPUTING ARCHITURE**

Grid Computing anatomy - Next generation of Grid computing initiatives-Merging the Grid services architecture with Web services architecture.

GRID COMPUTING TECHNOLOGIES UNIT III

OGSA - Sample use cases that drive the OGSA platform components - OGSI and WSRF-OGSA Basic Services - Security standards for grid computing.

UNIT IV **GRID COMPUTING TOOL KIT**

Globus Toolkit -Versions - Architecture -GT Programming model -A sample grid service implementation.

UNIT V **HIGH LEVEL GRID SERVICES**

High level grid services – OGSI .NET middleware Solution Mobile OGSI.NET for Grid computing on Mobile devices.

TOTAL: 45 PERIODS

7

9

7

LTPC 3003

8

11

10

TEXT BOOK:

1. Joshy Joseph & Craig Fellenstein, "Grid Computing", Pearson/PHI PTR-2003.

REFERENCES:

- 1. Fran Berman, Geoffrey Fox, Anthony J.G. Hey, "Grid Computing: Making the Global Infrastructure a reality", John Wiley and sons,2003.
- 2. Ahmar Abbas, "Grid Computing: A Practical Guide to Technology and Applications", Charles River media, 2003.

CS9253 THEORY OF COMPUTATION L T P C 3 0 0 3

UNIT I AUTOMATA

Introduction to formal proof – Additional forms of Proof – Inductive Proofs –Finite Automata – Deterministic Finite Automata – No deterministic Finite Automata – Finite Automata with Epsilon Transitions.

UNIT II REGULAR EXPRESSIONS AND LANGUAGES

Regular Expression – FA and Regular Expressions – Proving Languages not to be regular – Closure Properties of Regular Languages – Equivalence and Minimization of Automata.

UNIT III CONTEXT FREE GRAMMAR AND LANGUAGES

CFG – Parse Trees – Ambiguity in Grammars and Languages – Definition of the Pushdown Automata – Languages of a Pushdown Automata – Equivalence of Pushdown Automata and CFG, Deterministic Pushdown Automata.

UNIT IV PROPERTIES OF CONTEXT FREE LANGUAGES

Normal Forms for CFG – Pumping Lemma for CFL – Closure Properties of CFL – Turing Machines – Programming Techniques for TM.

UNIT V INDECIDABILITY

A Language That Is Not Recursive Enumerable – An Undecidable Problem that Is RE – Undecidable Problems about TM – Post's Correspondence Problem, The Class P And NP.

TOTAL : 45 PERIODS

TEXT BOOK:

1. J.E.Hopcroft, R.Motwani and J.D Ullman, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2003.

REFERENCES:

- 1. H.R.Lewis and C.H.Papadimitriou, "Elements of the theory of Computation", Second Edition, PHI, 2003.
- 2. J.Martin, "Introduction to Languages and the Theory of Computation", Third Edition, TMH, 2003.

8

3. Micheal Sipser, "Introduction of the Theory and Computation", Thomson Brokecole, 1997.

9

9

9

9

UNIT I INTRODUCTION TO SOFT COMPUTING AND NEURAL NETWORKS

Evolution of Computing - Soft Computing Constituents – From Conventional AI to Computational Intelligence - Machine Learning Basics

SOFT COMPUTING

UNIT II GENETIC ALGORITHMS

Introduction to Genetic Algorithms (GA) – Applications of GA in Machine Learning - Machine Learning Approach to Knowledge Acquisition.

UNIT III NEURAL NETWORKS

Machine Learning Using Neural Network, Adaptive Networks – Feed forward Networks – Supervised Learning Neural Networks – Radial Basis Function Networks - Reinforcement Learning – Unsupervised Learning Neural Networks – Adaptive Resonance architectures – Advances in Neural networks.

UNIT IV FUZZY LOGIC

Fuzzy Sets – Operations on Fuzzy Sets – Fuzzy Relations – Membership Functions- Fuzzy Rules and Fuzzy Reasoning – Fuzzy Inference Systems – Fuzzy Expert Systems – Fuzzy Decision Making.

UNIT V NEURO-FUZZY MODELING

Adaptive Neuro-Fuzzy Inference Systems – Coactive Neuro-Fuzzy Modeling – Classification and Regression Trees – Data Clustering Algorithms – Rulebase Structure Identification – Neuro-Fuzzy Control – Case studies.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Jyh-Shing Roger Jang, Chuen-Tsai Sun, Eiji Mizutani, "Neuro-Fuzzy and Soft Computing", Prentice-Hall of India, 2003.
- 2. George J. Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic-Theory and Applications", Prentice Hall, 1995.
- 3. James A. Freeman and David M. Skapura, "Neural Networks Algorithms, Applications, and Programming Techniques", Pearson Edn., 2003.

REFERENCES:

- 1. Mitchell Melanie, "An Introduction to Genetic Algorithm", Prentice Hall, 1998.
- 2. David E. Goldberg, "Genetic Algorithms in Search, Optimization and Machine Learning", Addison Wesley, 1997.
- 3. S. N. Sivanandam, S. Sumathi and S. N. Deepa, "Introduction to Fuzzy Logic using MATLAB", Springer, 2007.
- 4. S.N.Sivanandam · S.N.Deepa, "Introduction to Genetic Algorithms", Springer, 2007.
- 5. Jacek M. Zurada, "Introduction to Artificial Neural Systems", PWS Publishers, 1992.

9

9

9

9

UNIT I COMMUNICATION IN DISTRIBUTED ENVIRONMENT

Introduction – Various Paradigms in Distributed Applications – Remote Procedure Call – Remote Object Invocation – Message-Oriented Communication – Unicasting, Multicasting and Broadcasting – Group Communication.

DISTRIBUTED COMPUTING

UNIT II DISTRIBUTED OPERATING SYSTEMS

Issues in Distributed Operating System – Threads in Distributed Systems – Clock Synchronization – Causal Ordering – Global States – Election Algorithms –Distributed Mutual Exclusion – Distributed Transactions – Distributed Deadlock – Agreement Protocols .

UNIT III DISTRIBUTED RESOURCE MANAGEMENT

Distributed Shared Memory – Data-Centric Consistency Models – Client-Centric Consistency Models – Ivy – Munin – Distributed Scheduling – Distributed File Systems – Sun NFS.

UNIT IV FAULT TOLERANCE AND CONSENSUS

Introduction to Fault Tolerance – Distributed Commit Protocols – Byzantine Fault Tolerance – Impossibilities in Fault Tolerance.

UNIT V CASE STUDIES

Distributed Object-Based System – CORBA – COM+ – Distributed Coordination-Based System – JINI.

TOTAL : 45 PERIODS

REFERENCES:

- 1. George Coulouris, Jean Dollimore, Tim Kindberg, "Distributed Systems Concepts and Design", Third Edition, Pearson Education Asia, 2002.
- 2. Hagit Attiya and Jennifer Welch, "Distributed Computing: Fundamentals, Simulations and Advanced Topics", Wiley, 2004.
- 3. Mukesh Singhal, "Advanced Concepts In Operating Systems", McGrawHill Series in Computer Science, 1994.
- 4. A.S.Tanenbaum, M.Van Steen, "Distributed Systems", Pearson Education, 2004.
- 5. M.L.Liu, "Distributed Computing Principles and Applications", Pearson Addison Wesley, 2004.

CS9256 MULTIMEDIA SYSTEMS L T P C 3 0 0 3

UNIT I INTRODUCTION AND QOS

Introduction-QOS Requirements and Constraints-Concepts-Resources- Establishment Phase-Run-Time Phase-Management Architectures.

UNIT II OPERATING SYSTEMS

Real-Time Processing-Scheduling-Interprocess Communication-Memory and Management-Server Architecture-Disk Management.

8

12

10

8

7

9

11

UNIT III FILE SYSTEMS AND NETWORKS

Traditional and Multimedia File Systems-Caching Policy-Batching-Piggy backing-Ethernet-Gigabit Ethernet-Token Ring-100VG Any LAN-Fiber Distributed Data Interface (FDDI)- ATM Networks-MAN-WAN.

UNIT IV COMMUNICATION

Transport Subsystem-Protocol Support for QOS-Transport of Multimedia-Computer Supported Cooperative Work-Architecture-Session Management-MBone Applications.

UNIT V SYNCHRONIZATION

Synchronization in Multimedia Systems-Presentation-Synchronization Types-Multimedia Synchronization Methods-Case Studies-MHEG-MODE-ACME.

TOTAL: 45 PERIODS

TEXT BOOK:

1. Ralf Steinmetz and Klara Nahrstedt, "Multimedia Systems", Springer, I Edition 2004.

REFERENCES:

UNIT I

- 1. Ralf Steinmetz and Klara Nahrstedt, Media Coding and Content Processing, Prentice hall, 2002.
- 2. Vaughan T, Multimedia, Tata McGraw Hill, 1999.
- 3. Mark J.B., Sandra K.M., Multimedia Applications Development using DVI technology, McGraw Hill, 1992.
- 4. K. R. Rao, Zoran S. Bojkovic, Dragorad A. Milovacovic, D. A. Milovacovic, Multimedia Communication Systems: Techniques, Standards, and Networks, Prentice Hall, 1st Edition, 2002
- 5. Ze-Nian Li and Mark S. Drew, Fundamentals of Multimedia, Pearson, 2004.

CS 9257 XML AND WEB SERVICES LTPC

XML TECHNOLOGY FAMILY

XML – benefits – Advantages of XML over HTML – EDL – Databases – XML based standards – DTD –XML Schemas – X- Files – XML processing – DOM –SAX- presentation technologies – XSL – XFORMS – XHTML – voice XML – Transformation – XSLT – XLINK – XPATH – XQ

UNIT II **ARCHITECTING WEB SERVICES**

Business motivations for web services - B2B - B2C- Technical motivations - limitations of CORBA and DCOM - Service - oriented Architecture (SOA) - Architecting web services -Implementation view - web services technology stack - logical view - composition of web services – deployment view – from application server to peer to peer – process view – life in the runtime

UNIT III WEB SERVICES BUILDING BLOCK

Transport protocols for web services - messaging with web services - protocols - SOAP describing web services - WSDL - Anatomy of WSDL - manipulating WSDL - web service policy - Discovering web services - UDDI - Anatomy of UDDI- Web service inspection - Ad-Hoc Discovery - Securing web services.

9

9

9

3003

9

9

UNIT IV IMPLEMENTING XML IN E-BUSINESS

B2B - B2C Applications – Different types of B2B interaction – Components of e-business XML systems – ebXML – Rosetta Net Applied XML in vertical industry – Web services for mobile devices.

UNIT V XML AND CONTENT MANAGEMENT

Semantic Web – Role of Meta data in web content – Resource Description Framework – RDF schema – Architecture of semantic web – content management workflow – XLANG – WSFL.

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Ron schmelzer et al, "XML and Web Services", Pearson Education, 2002.
- 2. Sandeep Chatterjee and James Webber, "Developing Enterprise Web Services: An Architect's Guide", Prentice Hall, 2004.

REFERENCES

- 1. Frank P. Coyle, "XML, Web Services and the Data Revolution", Pearson Education, 2002.
- 2. Keith Ballinger, ".NET Web Services Architecture and Implementation", Pearson Education, 2003.
- 3. Henry Bequet and Meeraj Kunnumpurath, "Beginning Java Web Services", Apress, 2004.
- 4. Russ Basiura and Mike Batongbacal, "Professional ASP.NET Web Services", Apress, 2.

CS9258

BIO INFORMATICS

UNIT I INTRODUCTORY CONCEPTS

The Central Dogma – The Killer Application – Parallel Universes – Watson's Definition – Top Down Versus Bottom up – Information Flow – Convergence – Databases – Data Management – Data Life Cycle – Database Technology – Interfaces – Implementation – Networks – Geographical Scope – Communication Models – Transmissions Technology – Protocols – Bandwidth – Topology – Hardware – Contents – Security – Ownership – Implementation – Management.

UNIT II SEARCH ENGINES AND DATA VISUALIZATION

The search process – Search Engine Technology – Searching and Information Theory – Computational methods – Search Engines and Knowledge Management – Data Visualization – sequence visualization – structure visualization – user Interface – Animation Versus simulation – General Purpose Technologies.

UNIT III STATISTICS AND DATA MINING

Statistical concepts – Microarrays – Imperfect Data – Randomness – Variability – Approximation – Interface Noise – Assumptions – Sampling and Distributions – Hypothesis Testing – Quantifying Randomness – Data Analysis – Tool selection statistics of Alignment – Clustering and Classification – Data Mining – Methods – Selection and Sampling – Preprocessing and Cleaning – Transformation and Reduction – Data Mining Methods – Evaluation – Visualization – Designing new queries – Pattern Recognition and Discovery – Machine Learning – Text Mining – Tools.

9

9

L T P C 3 0 0 3

9

UNIT IV PATTERN MATCHING

Pairwise sequence alignment – Local versus global alignment – Multiple sequence alignment – Computational methods – Dot Matrix analysis – Substitution matrices – Dynamic Programming – Word methods – Bayesian methods – Multiple sequence alignment – Dynamic Programming – Progressive strategies – Iterative strategies – Tools – Nucleotide Pattern Matching – Polypeptide pattern matching – Utilities – Sequence Databases.

UNIT V MODELING AND SIMULATION

Drug Discovery – components – process – Perspectives – Numeric considerations – Algorithms – Hardware – Issues – Protein structure – Ablnitio Methods – Heuristic methods – Systems Biology – Tools – Collaboration and Communications – standards - Issues – Security – Intellectual property.

REFERENCES:

- 1. Bryan Bergeron, "Bio Informatics Computing", Second Edition, Pearson Education, 2003.
- 2. T.K.Attwood and D.J. Perry Smith, "Introduction to Bio Informatics, Longman Essen, 1999.

CS9259	NETWORK SECURITY	L T P C 3 0 0 3
UNIT I Attacks - Serv – Encryption A	INTRODUCTION rices - Mechanisms - Conventional Encryption - Classical And Modern Algorithms - Confidentiality.	9 Techniques
UNIT II RSA - Elliptic	PUBLIC KEY ENCRYPTION Curve Cryptography - Number Theory Concepts	9
UNIT III Hash Functior	MESSAGE AUTHENTICATION ns - Digest Functions - Digital Signatures - Authentication Protocols.	9
UNIT IV Authentication	NETWORK SECURITY PRACTICE a, Applications - Electronic Mail Security - IP Security - Web Security.	9
UNIT V Intruders – Vir	SYSTEM SECURITY ruses – Worms – Firewalls Design Principles – Trusted Systems.	9
	TOTAL : 4	5 PERIODS

TEXT BOOK:

1. Stallings, Cryptography & Network Security - Principles & Practice, Prentice Hall, 3rd Edition 2002.

REFERENCES:

- 1. Bruce, Schneier, Applied Cryptography, 2nd Edition, Toha Wiley & Sons, 1996.
- 2. Man Young Rhee, "Internet Security", Wiley, 2003.
- 1. Pfleeger & Pfleeger, "Security in Computing", Pearson Education, 3rd Edition, 2003.

9

9

TOTAL: 45 PERIODS

CS9260

UNIT I EMBEDDED COMPUTING

Challenges of Embedded Systems - Embedded system design process. Embedded processors - ARM processor - Architecture, ARM and Thumb Instruction sets

EMBEDDED SYSTEMS

UNIT II EMBEDDED C PROGRAMMING

C-looping structures - Register allocation - Function calls - Pointer aliasing - structure arrangement – bit fields – unaligned data and endianness – inline functions inline and assembly - portability issues.

UNIT III **OPTIMIZING ASSEMBLY CODE**

Profiling and cycle counting - instruction scheduling - Register allocation - conditional execution - looping constructs - bit manipulation - efficient switches optimized primitives.

UNIT IV PROCESSES AND OPERATING SYSTEMS

Multiple tasks and processes - Context switching - Scheduling policies - Interprocess communication mechanisms - Exception and interrupt handling - Performance issues.

UNIT V EMBEDDED SYSTEM DEVELOPMENT

Meeting real time constraints - Multi-state systems and function sequences. Embedded software development tools - Emulators and debuggers. Design methodologies - Case studies - Complete design of example embedded systems.

TOTAL: 45 PERIODS

REFERENCES:

- 1. Andrew N Sloss, D. Symes, C. Wright, " ARM System Developers Guide", Morgan Kaufmann / Elsevier, 2006.
- 2. Michael J. Pont, "Embedded C", Pearson Education, 2007.
- 3. Wayne Wolf, "Computers as Components : Principles of Embedded Computer System Design", Morgan Kaufmann / Elsevier, 2nd. edition, 2008.
- 4. Steve Heath, "Embedded System Design", Elsevier, 2nd. edition, 2003.

CS9261

DIGITAL IMAGING

UNIT I FUNDAMENTALS OF IMAGE PROCESSING

Introduction - Steps in Image Processing Systems - Image Acquisition - Sampling and Quantization - Pixel Relationships - Colour Fundamentals and Models, File Formats, Image operations - Arithmetic, Geometric and Morphological.

UNIT II **IMAGE ENHANCEMENT**

Spatial Domain Gray level Transformations Histogram Processing Spatial Filtering -Smoothing and Sharpening.Frequency Domain : Filtering in Frequency Domain - DFT, FFT, DCT – Smoothing and Sharpening filters – Homomorphic Filtering.

LTPC 3003

9

9

9

LTPC 3003

9

9

9

UNIT III IMAGE SEGMENTATION AND FEATURE ANALYSIS

Detection of Discontinuities – Edge Operators – Edge Linking and Boundary Detection – Thresholding – Region Based Segmentation – Morphological WaterSheds – Motion Segmentation, Feature Analysis and Extraction.

UNIT IV MULTI RESOLUTION ANALYSIS AND COMPRESSIONS

Multi Resolution Analysis : Image Pyramids – Multi resolution expansion – Wavelet Transforms. Image Compression : Fundamentals – Models – Elements of Information Theory – Error Free Compression – Lossy Compression – Compression Standards.

UNIT V APPLICATIONS OF IMAGE PROCESSING

Image Classification – Image Recognition – Image Understanding – Video Motion Analysis – Image Fusion – Steganography – Digital Compositing – Mosaics – Colour Image Processing..

REFERENCES:

- 1. Rafael C.Gonzalez and Richard E.Woods, "Digital Image Processing" Second Edition, Pearson Education, 2003.
- 2. Milan Sonka, Vaclav Hlavac and Roger Boyle, "Image Processing, Analysis and Machine Vision", Second Edition, Thomson Learning, 2001
- 3. Anil K.Jain, "Fundamentals of Digital Image Processing", Person Education, 2003.

UNIT I

CS9262

Introduction to software quality - challenges – objectives – quality factors – components of SQA – contract review – development and quality plans – SQA components in project life cycle – SQA defect removal policies – Reviews

SOFTWARE QUALITY ASSURANCE

UNIT II

Basics of software testing – test generation from requirements – finite state models – combinatorial designs - test selection, minimization and prioritization for regression testing – test adequacy, assessment and enhancement

UNIT III

Testing strategies – white box and black box approach – integration testing – system and acceptance testing – performance testing – regression testing - internationalization testing – adhoc testing – website testing – usability testing – accessibility testing

Test plan – management – execution and reporting – software test automation – automated testing tools

UNIT IV

Hierarchical models of software quality – software quality metrics –function points -Software product quality – software maintenance quality – effect of case tools – software quality infrastructure – procedures – certifications – configuration management – documentation control.

9

9

TOTAL: 45 PERIODS

9

9

9

9

LTPC 3003

UNIT V

Project progress control – costs – quality management standards – project process standards – management and its role in SQA – SQA unit

TOTAL : 45 PERIODS

9

9

9

9

9

9

REFERENCES:

- 1. Daniel Galin, Software quality assurance from theory to implementation , Pearson education, 2009.
- 2. Aditya Mathur, Foundations of software testing, Pearson Education, 2008
- 3. Srinivasan Desikan and Gopalaswamy Ramesh, Software testing principles and practices , Pearson education, 2006
- 4. Ron Patton, Software testing, second edition, Pearson education, 2007
- 5. Alan C Gillies, "Software Quality Theory and Management", Cengage Learning, Second edition, 2003

CS9263	AD-HOC NETWORKS	LTPC
		3003

UNIT I AD-HOC MAC

Introduction – Issues in Ad-Hoc Wireless Networks. MAC Protocols – Issues, Classifications of MAC protocols, Multi channel MAC & Power control MAC protocol.

UNIT II AD-HOC NETWORK ROUTING & TCP

Issues – Classifications of routing protocols – Hierarchical and Power aware. Multicast routing – Classifications, Tree based, Mesh based. Ad Hoc Transport Layer Issues. TCP Over Ad Hoc – Feedback based, TCP with explicit link, TCP-BuS, Ad Hoc TCP, and Split TCP.

UNIT III WSN - MAC

Introduction – Sensor Network Architecture, Data dissemination, Gathering. MAC Protocols – self-organizing, Hybrid TDMA/FDMA and CSMA based MAC.

UNIT IV WSN ROUTING, LOCALIZATION & QOS

Issues in WSN routing – OLSR, AODV. Localization – Indoor and Sensor Network Localization. QoS in WSN.

UNIT V MESH NETWORKS

Necessity for Mesh Networks – MAC enhancements – IEEE 802.11s Architecture – Opportunistic routing – Self configuration and Auto configuration – Capacity Models – Fairness – Heterogeneous Mesh Networks – Vehicular Mesh Networks.

TOTAL : 45 PERIODS

REFERENCES:

- 1. C.Siva Ram Murthy and B.Smanoj, "Ad Hoc Wireless Networks Architectures and Protocols", Pearson Education, 2004.
- 2. Feng Zhao and Leonidas Guibas, "Wireless Sensor Networks", Morgan Kaufman Publishers, 2004.
- 3. C.K.Toh, "Ad Hoc Mobile Wireless Networks", Pearson Education, 2002.
- 4. Thomas Krag and Sebastin Buettrich, "Wireless Mesh Networking", O'Reilly Publishers, 2007.

CS9264 DATA WAREHOUSING AND DATA MINING

UNIT I

Data Warehousing and Business Analysis: - Data warehousing Components –Building a Data warehouse – Mapping the Data Warehouse to a Multiprocessor Architecture – DBMS Schemas for Decision Support – Data Extraction, Cleanup, and Transformation Tools –Metadata – reporting – Query tools and Applications – Online Analytical Processing (OLAP) – OLAP and Multidimensional Data Analysis.

UNIT II

Data Mining: - Data Mining Functionalities – Data Preprocessing – Data Cleaning – Data Integration and Transformation – Data Reduction – Data Discretization and Concept Hierarchy Generation.

Association Rule Mining: - Efficient and Scalable Frequent Item set Mining Methods – Mining Various Kinds of Association Rules – Association Mining to Correlation Analysis – Constraint-Based Association Mining.

UNIT III

Classification and Prediction: - Issues Regarding Classification and Prediction – Classification by Decision Tree Introduction – Bayesian Classification – Rule Based Classification – Classification by Back propagation – Support Vector Machines – Associative Classification – Lazy Learners – Other Classification Methods – Prediction – Accuracy and Error Measures – Evaluating the Accuracy of a Classifier or Predictor – Ensemble Methods – Model Section.

UNIT IV

Cluster Analysis: - Types of Data in Cluster Analysis – A Categorization of Major Clustering Methods – Partitioning Methods – Hierarchical methods – Density-Based Methods – Grid-Based Methods – Model-Based Clustering Methods – Clustering High-Dimensional Data – Constraint-Based Cluster Analysis – Outlier Analysis.

UNIT V

Mining Object, Spatial, Multimedia, Text and Web Data: Multidimensional Analysis and Descriptive Mining of Complex Data Objects – Spatial Data Mining – Multimedia Data Mining – Text Mining – Mining the World Wide Web.

TOTAL: 45 PERIODS

REFERENCES

- 1. Jiawei Han and Micheline Kamber "Data Mining Concepts and Techniques" Second Edition,
- 2. Elsevier, Reprinted 2008.
- 3. Alex Berson and Stephen J. Smith "Data Warehousing, Data Mining & OLAP", Tata McGraw Hill Edition, Tenth Reprint 2007.
- 4. K.P. Soman, Shyam Diwakar and V. Ajay "Insight into Data mining Theory and Practice", Easter Economy Edition, Prentice Hall of India, 2006.
- 5. G. K. Gupta "Introduction to Data Mining with Case Studies", Easter Economy Edition, Prentice Hall of India, 2006.
- 6. Pang-Ning Tan, Michael Steinbach and Vipin Kumar "Introduction to Data Mining", Pearson Education, 2007.

LTPC 3003 9

- 9
- 9

CS9265 PERFORMANCE EVALUATION OF COMPUTER SYSTEMS L T P C AND NETWORKS 3003

UNIT I

Performance Characteristics – Requirement Analysis: Concepts –User, Device, Network Requirements – Process –Developing RMA ,Delay, Capacity Requirements – Flow Analysis – Identifying and Developing Flows –Flow Models –Flow Prioritization –Specification.

UNIT II

Random variables - Stochastic process –Link Delay components – Queuing Models – Little's Theorem – Birth & Death process – Queuing Disciplines.

UNIT III

Markovian FIFO Queuing Systems – $M/M/1 - M/M/a - M/M/\infty - M/G/1 - M/M/m/m$ and other Markov-Non-Markovian and self-similar models – Network of Queues –Burke's Theorem – Jackson's Theorem.

UNIT IV

Multi-User Uplinks/Downlinks - Capacity Regions - Opportunistic Scheduling for Stability and Max Throughput - Multi-Hop Routing - Mobile Networks - Throughput Optimality and Backpressure

UNIT V

Performance of Optimal Lyapunov Networking - Energy Optimality- Energy-Delay Tradeoffs - Virtual Cost Queues - Average Power Constraints - Flow Control with Infinite Demand - Auxiliary Variables - Flow Control with Finite Demand - General Utility Optimization.

TOTAL : 45 PERIODS

TEXT BOOKS:

- 1. James D.McCabe , Network Analysis , Architecture and Design , 2nd Edition, Elsevier, 2003
- 2. Bertsekas & Gallager , Data Networks , second edition ,Pearson Education,2003
- 3. Introduction to Probability Models by Sheldon Ross (8th edition) Academic Press, New York ,2003

REFERENCES:

- 1. D. Bertsekas, A. Nedic and A. Ozdaglar, Convex Analysis and Optimization, Athena Scientific, Cambridge, Massachusetts, 2003
- 2. Nader F.Mir Computer and Communication Networks, Pearson Education.2007
- 3. Paul J.Fortier, Howard E.Michel, Computer Systems Performance Evaluation and Prediction, Elsevier, 2003

CS9266 AGENT BASED INTELLIGENT SYSTEMS L T P C 3 0 0 3

UNIT I INTRODUCTION

Definitions - Foundations - History - Intelligent Agents-Problem Solving-Searching - Heuristics - Constraint Satisfaction Problems - Game playing.

9

9

9

9

9

UNIT II KNOWLEDGE REPRESENTATION AND REASONING

Logical Agents-First order logic-First Order Inference-Unification-Chaining- Resolution Strategies-Knowledge Representation-Objects-Actions-Events

UNIT III PLANNING AGENTS

Planning Problem-State Space Search-Partial Order Planning-Graphs-Nondeterministic Domains-Conditional Planning-Continuous Planning-MultiAgent Planning.

UNIT IV AGENTS AND UNCERTAINITY

Acting under uncertainty – Probability Notation-Bayes Rule and use - Bayesian Networks-Other Approaches-Time and Uncertainty-Temporal Models- Utility Theory - Decision Network – Complex Decisions.

UNIT V HIGHER LEVEL AGENTS

Knowledge in Learning-Relevance Information-Statistical Learning Methods-Reinforcement Learning-Communication-Formal Grammar-Augmented Grammars- Future of AI.

TOTAL: 45 PERIODS

TEXT BOOK:

1. Stuart Russell and Peter Norvig, "Artificial Intelligence - A Modern Approach", 2nd Edition, Prentice Hall, 2002

REFERENCES:

UNIT I

- 1. Michael Wooldridge, "An Introduction to Multi Agent System", John Wiley, 2002.
- 2. Patrick Henry Winston, Artificial Intelligence, III Edition, AW, 1999.
- 3. Nils.J.Nilsson, Principles of Artificial Intelligence, Narosa Publishing House, 1992.

CS9267 VISUALIZATION TECHNIQUES L T P C 3003

UNIT II FOUNDATIONS FOR DATA VISUALIZATION

Introduction – Issues – Data Representation – Data Presentation - Interaction

Visualization stages – Experimental Semiotics based on Perception Gibson's Affordance theory – A Model of Perceptual Processing – Types of Data.

UNIT III COMPUTER VISUALIZATION

VISUALIZATION

Non-Computer Visualization – Computer Visualization: Exploring Complex Information Spaces – Fisheye Views – Applications – Comprehensible Fisheye views – Fisheye views for 3D data – Non Linear Magnification – Comparing Visualization of Information Spaces – Abstraction in computer Graphics – Abstraction in user interfaces.

UNIT IV MULTIDIMENSIONAL VISUALIZATION

One Dimension – Two Dimensions – Three Dimensions – Multiple Dimensions – Trees – Web Works – Data Mapping: Document Visualization – Workspaces.

.

9

9

9

9

9

9

9

UNIT V CASE STUDIES

Small interactive calendars - Selecting one from many - Web browsing through a key hole -Communication analysis – Archival analysis

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. Colin Ware, "Information Visualization Perception for Design" Margon Kaufmann Publishers, 2004. 2nd edition.
- 2. Robert Spence "Information visualization Design for interaction", Pearson Education, 2 nd Edition, 2007

REFERENCE:

1. Stuart.K.Card, Jock.D.Mackinlay and Ben Shneiderman, "Readings in Information Visualization Using Vision to think", Morgan Kaufmann Publishers.

CS9268

ADVANCED DATABASES

UNIT I PARALLEL AND DISTRIBUTED DATABASES

Database System Architectures: Centralized and Client-Server Architectures - Server System Architectures - Parallel Systems - Distributed Systems - Parallel Databases: I/O Parallelism -Inter and Intra Query Parallelism – Inter and Intra operation Parallelism – Distributed Database Concepts - Distributed Data Storage - Distributed Transactions - Commit Protocols -Concurrency Control - Distributed Query Processing - Three Tier Client Server Architecture-Case Studies.

UNIT II **OBJECT AND OBJECT RELATIONAL DATABASES**

Concepts for Object Databases: Object Identity - Object structure - Type Constructors -Encapsulation of Operations - Methods - Persistence - Type and Class Hierarchies -Inheritance - Complex Objects - Object Database Standards, Languages and Design: ODMG Model – ODL – OQL – Object Relational and Extended – Relational Systems : Object Relational feature sin SQL/Oracle - Case Studies.

UNIT III XML DATABASES

XML Databases: XML Data Model - DTD - XML Schema - XML Querying - Web Databases -JDBC – Information Retrieval – Data Warehousing – Data Mining

UNIT IV **MOBILE DATABASES**

Mobile Databases: Location and Handoff Management - Effect of Mobility on Data Management - Location Dependent Data Distribution - Mobile Transaction Models - Concurrency Control -Transaction Commit Protocols- Mobile Database Recovery Schemes

UNIT V **MULTIMEDIA DATABASES**

Multidimensional Data Structures - Image Databases - Text/Document Databases- Video Databases - Audio Databases - Multimedia Database Design.

9

LTPC 3003

9

9

9

REFERENCES:

- 1. R. Elmasri, S.B. Navathe, "Fundamentals of Database Systems", Fifth Edition, Pearson Education/Addison Wesley, 2007.
- 2. Thomas Cannolly and Carolyn Begg, "Database Systems, A Practical Approach to Design. Implementation and Management", Third Edition, Pearson Education, 2007.
- 3. Henry F Korth, Abraham Silberschatz, S. Sudharshan, "Database System Concepts", Fifth Edition, McGraw Hill, 2006.
- 1. C.J.Date, A.Kannan and S.Swamynathan,"An Introduction to Database Systems", Eighth Edition, Pearson Education, 2006.
- 2. V.S.Subramanian, "Principles of Multimedia Database Systems", Harcourt India Pvt Ltd., 2001.
- 3. Vijay Kumar, "Mobile Database Systems", John Wiley & Sons, 2006.

CS9269	SOFTWARE PROJECT MANAGEMENT	LTPC
		3 0 0 3

UNIT I **BASIC CONCEPTS**

Product, Process and Project – Definition – Product Life Cycle – Project Life Cycle Models.

UNIT II FORMAT PROCESS MODELS AND THEIR USE

Definition and Format model for a process - The ISO 9001 and CMM Models and their relevance to Project Management – Other Emerging Models like People CMM.

UNIT III **UMBRELLA ACTIVITIES IN PROJECTS**

Metrics – Configuration Management – Software Quality Assurance – Risk Analysis.

UNIT IV IN STREAM ACTIVITIES IN PROJECTS

Project Initiation - Project Planning - Execution and Tracking - Project Wind up - Concept of Process/Project Database.

UNIT V ENGINEERING AND PEOPLE ISSUES IN PROJECT MANAGEMENT 9

Phases (Requirements, Design, Development, Testing, Maintenance, Deployment) -Engineering Activities and Management Issues in Each Phase - Special Considerations in Project Management for India and Geographical Distribution Issues.

TOTAL: 45 PERIODS

REFERENCES:

- 1. Ramesh, Gopalaswamy, "Managing Global Projects", Tata McGraw Hill, 2001.
- 2. Humphrey, Watts, "Managing the Software Process ", Addison Wesley, 1986.
- 3. Pressman, Roger, "Software Engineering", A Practitioner's approach. McGraw
- 4. Bob Hughes and Mike Cotterell,"Software Project Management".
- 5. Wheelwright and Clark,"Revolutionising product development", The Free Press, 1993.

9

9

9

9

Hill,1997.

UNIT I INTRODUCTION

CS9270

Software Components – objects – fundamental properties of Component technology – modules – interfaces – callbacks – directory services – component architecture – components and middleware.

UNIT II JAVA COMPONENT TECHNOLOGIES

Threads – Java Beans – Events and connections – properties – introspection – JAR files – reflection – object serialization – Enterprise Java Beans – Distributed Object models – RMI and RMI-IIOP.

UNIT III CORBA TECHNOLOGIES

Java and CORBA – Interface Definition language – Object Request Broker – system object model – portable object adapter – CORBA services – CORBA component model – containers – application server – model driven architecture.

UNIT IV COM AND .NET TECHNOLOGIES

COM – Distributed COM – object reuse – interfaces and versioning – dispatch interfaces – connectable objects – OLE containers and servers – Active X controls – .NET components - assemblies – appdomains – contexts – reflection – remoting.

UNIT V COMPONENT FRAMEWORKS AND DEVELOPMENT

Connectors – contexts – EJB containers – CLR contexts and channels – Black Box component framework – directory objects – cross-development environment – component-oriented programming – Component design and implementation tools – testing tools - assembly tools.

TOTAL: 45 PERIODS

TEXT BOOK:

1. "Component Software: Beyond Object-Oriented Programming", Pearson Education publishers, 2003.

REFERENCE:

1. Ed Roman, "Enterprise Java Beans", Third Edition, Wiley, 2004.

9

9

9

9

9

3 0 0 3

LTPC